Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 117: 36-50, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38182037

RESUMO

Risk factors contributing to dementia are multifactorial. Accumulating evidence suggests a role for pathogens as risk factors, but data is largely correlative with few causal relationships. Here, we demonstrate that intermittent murine cytomegalovirus (MCMV) infection of mice, alters blood brain barrier (BBB) permeability and metabolic pathways. Increased basal mitochondrial function is observed in brain microvessels cells (BMV) exposed to intermittent MCMV infection and is accompanied by elevated levels of superoxide. Further, mice score lower in cognitive assays compared to age-matched controls who were never administered MCMV. Our data show that repeated systemic infection with MCMV, increases markers of neuroinflammation, alters mitochondrial function, increases markers of oxidative stress and impacts cognition. Together, this suggests that viral burden may be a risk factor for dementia. These observations provide possible mechanistic insights through which pathogens may contribute to the progression or exacerbation of dementia.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Infecções por Citomegalovirus , Demência , Animais , Camundongos , Infecções por Citomegalovirus/complicações , Cognição
2.
Geroscience ; 46(1): 395-415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37897653

RESUMO

We previously reported evidence that oxidative stress during aging leads to adverse protein profile changes of brain cortical microvessels (MVs: end arterioles, capillaries, and venules) that affect mRNA/protein stability, basement membrane integrity, and ATP synthesis capacity in mice. As an extension of our previous study, we also found that proteins which comprise the blood-brain barrier (BBB) and regulate mitochondrial quality control were also significantly decreased in the mice's cortical MVs with aging. Interestingly, the neuroinflammatory protein fibrinogen (Fgn) was increased in mice brain MVs, which corresponds with clinical reports indicating that the plasma Fgn concentration increased progressively with aging. In this study, protein-protein interaction network analysis indicated that high expression of Fgn is linked with downregulated expression of both BBB- and mitochondrial fission/fusion-related proteins in mice cortical MVs with aging. To investigate the mechanism of Fgn action, we observed that 2 mg/mL or higher concentration of human plasma Fgn changed cell morphology, induced cytotoxicity, and increased BBB permeability in primary human brain microvascular endothelial cells (HBMECs). The BBB tight junction proteins were significantly decreased with increasing concentration of human plasma Fgn in primary HBMECs. Similarly, the expression of phosphorylated dynamin-related protein 1 (pDRP1) and other mitochondrial fission/fusion-related proteins were also significantly reduced in Fgn-treated HBMECs. Interestingly, DRP1 knockdown by shRNA(h) resulted in the reduction of both BBB- and mitochondrial fission/fusion-related proteins in HBMECs. Our results suggest that elevated Fgn downregulates DRP1, leading to mitochondrial-dependent endothelial and BBB dysfunction in the brain microvasculature.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Camundongos , Humanos , Animais , Barreira Hematoencefálica/metabolismo , Fibrinogênio/metabolismo , Microvasos/metabolismo , Dinaminas/metabolismo
3.
Front Neuroendocrinol ; 70: 101068, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37061205

RESUMO

Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.


Assuntos
Doenças Cardiovasculares , Estrogênios , Humanos , Encéfalo , Menopausa/psicologia , Cognição , Doenças Cardiovasculares/tratamento farmacológico
4.
Front Oncol ; 12: 893820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046049

RESUMO

Increased vascularization, also known as neoangiogenesis, plays a major role in many cancers, including glioblastoma multiforme (GBM), by contributing to their aggressive growth and metastasis. Although anti-angiogenic therapies provide some clinical improvement, they fail to significantly improve the overall survival of GBM patients. Since various pro-angiogenic mediators drive GBM, we hypothesized that identifying targetable genes that broadly inhibit multiple pro-angiogenic mediators will significantly promote favorable outcomes. Here, we identified TRAF3IP2 (TRAF3-interacting protein 2) as a critical regulator of angiogenesis in GBM. We demonstrated that knockdown of TRAF3IP2 in an intracranial model of GBM significantly reduces vascularization. Targeting TRAF3IP2 significantly downregulated VEGF, IL6, ANGPT2, IL8, FZGF2, PGF, IL1ß, EGF, PDGFRB, and VEGFR2 expression in residual tumors. Our data also indicate that exogenous addition of VEGF partially restores angiogenesis by TRAF3IP2-silenced cells, suggesting that TRAF3IP2 promotes angiogenesis through VEGF- and non-VEGF-dependent mechanisms. These results indicate the anti-angiogenic and anti-tumorigenic potential of targeting TRAF3IP2 in GBM, a deadly cancer with limited treatment options.

5.
Geroscience ; 44(6): 2721-2739, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35978067

RESUMO

Diabetes increases the risk of Alzheimer's disease (AD). We investigated the impact of glucose concentrations on the ß-amyloid (Aß)-induced alteration of mitochondrial/cellular energetics in primary human brain microvascular endothelial cells (HBMECs). HBMECs were grown and passaged in media containing 15 mmol/l glucose (normal) based on which the glucose levels in the media were designated as high (25 mmol/L) or low (5 mmol/L). HBMECs were treated with Aß (1-42) (5 µmol/l) or a scrambled peptide for 24 h and mitochondrial respiratory parameters were measured using Seahorse Mito Stress Test. Aß (1-42) decreased the mitochondrial ATP production at normal glucose levels and decreased spare respiratory capacity at high glucose levels. Aß (1-42) diminished all mitochondrial respiratory parameters markedly at low glucose levels that were not completely recovered by restoring normal glucose levels in the media. The addition of mannitol (10 mmol/l) to low and normal glucose-containing media altered the Aß (1-42)-induced bioenergetic defects. Even at normal glucose levels, pre-senescent HMBECs (passage 15) displayed greater Aß (1-42)-induced mitochondrial respiratory impairments than young cells (passages 7-9). Thus, hypoglycemia, osmolarity changes, and senescence are stronger instigators of Aß (1-42)-induced mitochondrial respiration and energetics in HBMECs and contributors to diabetes-related increased AD risk than hyperglycemia.


Assuntos
Peptídeos beta-Amiloides , Células Endoteliais , Humanos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Respiração , Glucose/farmacologia
6.
Proc Natl Acad Sci U S A ; 119(29): e2204527119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858325

RESUMO

Mice with insulin receptor (IR)-deficient astrocytes (GFAP-IR knockout [KO] mice) show blunted responses to insulin and reduced brain glucose uptake, whereas IR-deficient astrocytes show disturbed mitochondrial responses to glucose. While exploring the functional impact of disturbed mitochondrial function in astrocytes, we observed that GFAP-IR KO mice show uncoupling of brain blood flow with glucose uptake. Since IR-deficient astrocytes show higher levels of reactive oxidant species (ROS), this leads to stimulation of hypoxia-inducible factor-1α and, consequently, of the vascular endothelial growth factor angiogenic pathway. Indeed, GFAP-IR KO mice show disturbed brain vascularity and blood flow that is normalized by treatment with the antioxidant N-acetylcysteine (NAC). NAC ameliorated high ROS levels, normalized angiogenic signaling and mitochondrial function in IR-deficient astrocytes, and normalized neurovascular coupling in GFAP-IR KO mice. Our results indicate that by modulating glucose uptake and angiogenesis, insulin receptors in astrocytes participate in neurovascular coupling.


Assuntos
Astrócitos , Encéfalo , Insulina , Neovascularização Fisiológica , Acoplamento Neurovascular , Animais , Astrócitos/metabolismo , Encéfalo/irrigação sanguínea , Proteína Glial Fibrilar Ácida/genética , Glucose/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Receptor de Insulina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Front Mol Neurosci ; 15: 871974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465090

RESUMO

The tumor suppressor p53 plays a crucial role in embryonic neuron development and neurite growth, and its involvement in neuronal homeostasis has been proposed. To better understand how the lack of the p53 gene function affects neuronal activity, spine development, and plasticity, we examined the electrophysiological and morphological properties of layer 5 (L5) pyramidal neurons in the primary somatosensory cortex barrel field (S1BF) by using in vitro whole-cell patch clamp and in vivo two-photon imaging techniques in p53 knockout (KO) mice. We found that the spiking frequency, excitatory inputs, and sag ratio were decreased in L5 pyramidal neurons of p53KO mice. In addition, both in vitro and in vivo morphological analyses demonstrated that dendritic spine density in the apical tuft is decreased in L5 pyramidal neurons of p53KO mice. Furthermore, chronic imaging showed that p53 deletion decreased dendritic spine turnover in steady-state conditions, and prevented the increase in spine turnover associated with whisker stimulation seen in wildtype mice. In addition, the sensitivity of whisker-dependent texture discrimination was impaired in p53KO mice compared with wildtype controls. Together, these results suggest that p53 plays an important role in regulating synaptic plasticity by reducing neuronal excitability and the number of excitatory synapses in S1BF.

8.
Geroscience ; 44(4): 1975-1994, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35378718

RESUMO

Alterations of mitochondrial and glycolytic energy pathways related to aging could contribute to cerebrovascular dysfunction. We studied the impact of aging on energetics of primary human brain microvascular endothelial cells (HBMECs) by comparing the young (passages 7-9), pre-senescent (passages 13-15), and senescent (passages 20-21) cells. Pre-senescent HBMECs displayed decreased telomere length and undetectable telomerase activity although markers of senescence were unaffected. Bioenergetics in HBMECs were determined by measuring the oxygen consumption (OCR) and extracellular acidification (ECAR) rates. Cellular ATP production in young HBMECs was predominantly dependent on glycolysis with glutamine as the preferred fuel for mitochondrial oxidative phosphorylation (OXPHOS). In contrast, pre-senescent HBMECs displayed equal contribution to ATP production rate from glycolysis and OXPHOS with equal utilization of glutamine, glucose, and fatty acids as mitofuels. Compared to young, pre-senescent HBMECs showed a lower overall ATP production rate that was characterized by diminished contribution from glycolysis. Impairments of glycolysis displayed by pre-senescent cells included reduced basal glycolysis, compensatory glycolysis, and non-glycolytic acidification. Furthermore, impairments of mitochondrial respiration in pre-senescent cells involved the reduction of maximal respiration and spare respiratory capacity but intact basal and ATP production-related OCR. Proton leak and non-mitochondrial respiration, however, were unchanged in the pre-senescent HBMECs. HBMECS at passages 20-21 displayed expression of senescence markers and continued similar defects in glycolysis and worsened OXPHOS. Thus, for the first time, we characterized the bioenergetics of pre-senescent HBMECs comprehensively to identify the alterations of the energy pathways that could contribute to aging.


Assuntos
Células Endoteliais , Fosforilação Oxidativa , Humanos , Glutamina/metabolismo , Glicólise , Encéfalo/metabolismo , Trifosfato de Adenosina/metabolismo
9.
J Cereb Blood Flow Metab ; 42(8): 1410-1424, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35296173

RESUMO

Mitochondrial and glycolytic energy pathways regulate the vascular functions. Aging impairs the cerebrovascular function and increases the risk of stroke and cognitive dysfunction. The goal of our study is to characterize the impact of aging on brain microvascular energetics. We measured the oxygen consumption and extracellular acidification rates of freshly isolated brain microvessels (BMVs) from young (2-4 months) and aged (20-22 months) C57Bl/6 male mice. Cellular ATP production in BMVs was predominantly dependent on oxidative phosphorylation (OXPHOS) with glucose as the preferred energy substrate. Aged BMVs exhibit lower ATP production rate with diminished OXPHOS and glycolytic rate accompanied by increased utilization of glutamine. Impairments of glycolysis displayed by aged BMVs included reduced compensatory glycolysis whereas impairments of mitochondrial respiration involved reduction of spare respiratory capacity and proton leak. Aged BMVs showed reduced levels of key glycolysis proteins including glucose transporter 1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 but normal lactate dehydrogenase activity. Mitochondrial protein levels were mostly unchanged whereas citrate synthase activity was reduced, and glutamate dehydrogenase was increased in aged BMVs. Thus, for the first time, we identified the dominant role of mitochondria in bioenergetics of BMVs and the alterations of the energy pathways that make the aged BMVs vulnerable to injury.


Assuntos
Metabolismo Energético , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Envelhecimento , Animais , Encéfalo/metabolismo , Glicólise/fisiologia , Masculino , Camundongos , Consumo de Oxigênio
10.
Geroscience ; 44(1): 371-388, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34708300

RESUMO

Differentially expressed (DE) proteins in the cortical microvessels (MVs) of young, middle-aged, and old male and female mice were evaluated using discovery-based proteomics analysis (> 4,200 quantified proteins/group). Most DE proteins (> 90%) showed no significant differences between the sexes; however, some significant DE proteins showing sexual differences in MVs decreased from young (8.3%), to middle-aged (3.7%), to old (0.5%) mice. Therefore, we combined male and female data for age-dependent comparisons but noted sex differences for examination. Key proteins involved in the oxidative stress response, mRNA or protein stability, basement membrane (BM) composition, aerobic glycolysis, and mitochondrial function were significantly altered with aging. Relative abundance of superoxide dismutase-1/-2, catalase and thioredoxin were reduced with aging. Proteins participating in either mRNA degradation or pre-mRNA splicing were significantly increased in old mice MVs, whereas protein stabilizing proteins decreased. Glycolytic proteins were not affected in middle age, but the relative abundance of these proteins decreased in MVs of old mice. Although most of the 41 examined proteins composing mitochondrial complexes I-V were reduced in old mice, six of these proteins showed a significant reduction in middle-aged mice, but the relative abundance increased in fourteen proteins. Nidogen, collagen, and laminin family members as well as perlecan showed differing patterns during aging, indicating BM reorganization starting in middle age. We suggest that increased oxidative stress during aging leads to adverse protein profile changes of brain cortical MVs that affect mRNA/protein stability, BM integrity, and ATP synthesis capacity.


Assuntos
Mitocôndrias , Proteômica , Animais , Membrana Basal , Encéfalo/metabolismo , Feminino , Glicólise/genética , Masculino , Camundongos , Microvasos/metabolismo , Mitocôndrias/metabolismo , Estabilidade Proteica , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Brain ; 144(8): 2527-2540, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34014281

RESUMO

Gene discovery efforts in autism spectrum disorder have identified heterozygous defects in chromatin remodeller genes, the 'readers, writers and erasers' of methyl marks on chromatin, as major contributors to this disease. Despite this advance, a convergent aetiology between these defects and aberrant chromatin architecture or gene expression has remained elusive. Recently, data have begun to emerge that chromatin remodellers also function directly on the cytoskeleton. Strongly associated with autism spectrum disorder, the SETD2 histone methyltransferase for example, has now been shown to directly methylate microtubules of the mitotic spindle. However, whether microtubule methylation occurs in post-mitotic cells, for example on the neuronal cytoskeleton, is not known. We found the SETD2 α-tubulin lysine 40 trimethyl mark occurs on microtubules in the brain and in primary neurons in culture, and that the SETD2 C-terminal SRI domain is required for binding and methylation of α-tubulin. A CRISPR knock-in of a pathogenic SRI domain mutation (Setd2SRI) that disables microtubule methylation revealed at least one wild-type allele was required in mice for survival, and while viable, heterozygous Setd2SRI/wtmice exhibited an anxiety-like phenotype. Finally, whereas RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) showed no concomitant changes in chromatin methylation or gene expression in Setd2SRI/wtmice, primary neurons exhibited structural deficits in axon length and dendritic arborization. These data provide the first demonstration that microtubules of neurons are methylated, and reveals a heterozygous chromatin remodeller defect that specifically disables microtubule methylation is sufficient to drive an autism-associated phenotype.


Assuntos
Ansiedade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Histonas/metabolismo , Metilação , Camundongos , Fenótipo
12.
Geroscience ; 43(1): 433-442, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33558965

RESUMO

Estrogen exerts protective effects on the cardiovascular system via three known estrogen receptors: alpha (ERα), beta (ERß), and the G protein-coupled estrogen receptor (GPER). Our laboratory has previously showed the importance of GPER in the beneficial cardiovascular effects of estrogen. Since clinical studies indicate that the protective effects of exogenous estrogen on cardiovascular function are attenuated or reversed 10 years post-menopause, the hypothesis was that GPER expression may be reduced during aging. Vascular reactivity and GPER protein expression were assessed in female mice of varying ages. Physiological parameters, blood pressure, and estrogen receptor transcripts via droplet digital PCR (ddPCR) were assessed in the heart, kidney, and aorta of adult, middle-aged, and aged male and female C57BL/6 mice. Vasodilation to estrogen (E2) and the GPER agonist G-1 were reduced in aging female mice and were accompanied by downregulation of GPER protein. However, ERα and GPER were the predominant receptors in all tissues, whereas ERß was detectable only in the kidney. Female sex was associated with higher mRNA for both ERα and GPER in both the aorta and the heart. Aging impacted receptor transcript in a tissue-dependent manner. ERα transcript decreased in the heart with aging, while GPER expression increased in the heart. These data indicate that aging impacts estrogen receptor expression in the cardiovascular system in a tissue- and sex-specific manner. Understanding the impact of aging on estrogen receptor expression is critical for developing selective hormone therapies that protect from cardiovascular damage.


Assuntos
Sistema Cardiovascular , Receptores de Estrogênio , Envelhecimento , Animais , Estrogênios/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Neurobiol Aging ; 98: 88-98, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249377

RESUMO

Sensorimotor performance declines during advanced age, partially due to deficits in somatosensory acuity. Cortical receptive field expansion contributes to somatosensory deficits, suggesting increased excitability or decreased inhibition in primary somatosensory cortex (S1) pyramidal neurons. To ascertain changes in excitability and inhibition, we measured both properties in neurons from vibrissal S1 in brain slices from young and aged mice. Because adapting and non-adapting neurons-the principal pyramidal types in layer 5 (L5)-differ in intrinsic properties and inhibitory inputs, we determined age-dependent changes according to neuron type. We found an age-dependent increase in intrinsic excitability in adapting neurons, caused by a decrease in action potential threshold. Surprisingly, in non-adapting neurons we found both an increase in excitability caused by increased input resistance, and a decrease in synaptic inhibition. Spike frequency adaptation, already small in non-adapting neurons, was further reduced by aging, whereas sag, a manifestation of Ih, was increased. Therefore, aging caused both decreased inhibition and increased intrinsic excitability, but these effects were specific to pyramidal neuron type.


Assuntos
Envelhecimento/fisiologia , Excitabilidade Cortical/fisiologia , Inibição Neural/fisiologia , Células Receptoras Sensoriais/fisiologia , Córtex Somatossensorial/citologia , Animais , Camundongos
14.
Comb Chem High Throughput Screen ; 24(10): 1714-1726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33208063

RESUMO

BACKGROUND: The use of nanoparticles has markedly increased in biomedical sciences. The silver nanoparticles (AgNPs) have been investigated for their applicability to deliver chemotherapeutic/antibacterial agents to treat cancer or infections disease. However, the existing chemical and physical methods of synthesizing AgNPs are considered inefficient, expensive and toxic. METHODS: Natural products have emerged as viable candidates for nanoparticle production, including the use of Terfezia boudieri (T. boudieri), a member of the edible truffle family. Accordingly, our goal was to synthesize AgNPs using an aqueous extract of T. boudieri (green synthesized AgNPs). Since certain infectious agents are linked to cancer, we investigated their potential as anti-cancer and antibacterial agents. RESULTS: The synthesis of AgNPs was confirmed by the presence of an absorption peak at 450nm by spectroscopy. The physico-chemical properties of green synthesized AgNPs were analyzed by UV-Vis, FT-IR, XRD, SEM, and TEM. In addition, their potential to inhibit cancer cell (proliferation and the growth of infectious bacteria were investigated. CONCLUSION: The size of nanoparticles ranged between 20-30nm. They exerted significant cytotoxicity and bactericidal effects in a concentration and time-dependent manner compared to T. boudieri extract alone. Interestingly, the synthesis of smaller AgNPs was correlated with longer synthesis time and enhanced cytotoxic and bactericidal properties.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Ascomicetos/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Antioxidantes , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Química Verde , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/síntese química , Extratos Vegetais/química , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/química , Staphylococcus aureus/efeitos dos fármacos
15.
Am J Physiol Heart Circ Physiol ; 320(2): H630-H641, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164581

RESUMO

Peroxynitrite (PN), generated from the reaction of nitric oxide (NO) and superoxide, is implicated in the pathogenesis of ischemic and neurodegenerative brain injuries. Mitochondria produce NO from mitochondrial NO synthases and superoxide by the electron transport chain. Our objective was to detect the generation of PN of mitochondrial origin and characterize its effects on mitochondrial respiratory function. Freshly isolated brain nonsynaptosomal mitochondria from C57Bl/6 (wild type, WT) and endothelial NO synthase knockout (eNOS-KO) mice were treated with exogenous PN (0.1, 1, 5 µmol/L) or a PN donor (SIN-1; 50 µmol/L) or a PN scavenger (FeTMPyP; 2.5 µmol/L). Oxygen consumption rate (OCR) was measured using Agilent Seahorse XFe24 analyzer and mitochondrial respiratory parameters were calculated. Mitochondrial membrane potential, superoxide, and PN were determined from rhodamine 123, dihydroethidium, and DAX-J2 PON green fluorescence measurements, respectively. Mitochondrial protein nitrotyrosination was determined by Western blots. Both exogenous PN and SIN-1 decreased respiratory function in WT isolated brain mitochondria. FeTMPyP enhanced state III and state IVo mitochondrial respiration in both WT and eNOS-KO mitochondria. FeTMPyP also elevated state IIIu respiration in eNOS-KO mitochondria. Unlike PN, neither SIN-1 nor FeTMPyP depolarized the mitochondria. Although mitochondrial protein nitrotyrosination was unaffected by SIN-1 or FeTMPyP, FeTMPyP reduced mitochondrial PN levels. Mitochondrial superoxide levels were increased by FeTMPyP but were unaffected by PN or SIN-1. Thus, we present the evidence of functionally significant PN generation in isolated brain mitochondria. Mitochondrial PN activity was physiologically relevant in WT mice and pathologically significant under conditions with eNOS deficiency.NEW & NOTEWORTHY Mitochondria generate superoxide and nitric oxide that could potentially react with each other to produce PN. We observed eNOS and nNOS immunoreactivity in isolated brain and heart mitochondria with pharmacological inhibition of nNOS found to modulate the mitochondrial respiratory function. This study provides evidence of generation of functionally significant PN in isolated brain mitochondria that affects respiratory function under physiological conditions. Importantly, the mitochondrial PN levels and activity were exaggerated in the eNOS-deficient mice, suggesting its pathological significance.


Assuntos
Encéfalo/metabolismo , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Superóxidos/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Catálise , Respiração Celular , Potencial da Membrana Mitocondrial , Metaloporfirinas/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Molsidomina/análogos & derivados , Molsidomina/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Ácido Peroxinitroso/farmacologia , Espécies Reativas de Oxigênio/metabolismo
16.
Am J Physiol Heart Circ Physiol ; 318(6): H1379-H1386, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32330090

RESUMO

Mitochondria are important regulators of cerebral vascular function in health and disease, but progress in understanding their roles has been hindered by methodological limitations. We report the first in vivo imaging of mitochondria specific to the cerebral endothelium in real time in the same mouse for extended periods. Mice expressing Dendra2 fluorescent protein in mitochondria (mito-Dendra2) in the cerebral vascular endothelium were generated by breeding PhAM-floxed and Tie2-Cre mice. We used mito-Dendra2 expression, cranial window implantation, and two-photon microscopy to visualize mitochondria in the cerebral vascular endothelium of mice. Immunohistochemistry and mitochondrial staining were used to confirm the localization of the mitochondrial signal to endothelial cells and the specificity of mito-Dendra2 to mitochondria. Mito-Dendra2 and Rhodamine B-conjugated dextran allowed simultaneous determinations of mitochondrial density, vessel diameters, area, and mitochondria-to-vessel ratio in vivo, repeatedly, in the same mouse. Endothelial expression of mito-Dendra2 was confirmed in vitro on brain slices and aorta. In addition, we observed an overlapping mito-Dendra2 and Chromeo mitochondrial staining of cultured brain microvascular endothelial cells. Repeated imaging of the same location in the cerebral microcirculation in the same mouse demonstrated stability of mito-Dendra2. While the overall mitochondrial signal was stable over time, mitochondria within the same endothelial cell were mobile. In conclusion, our results indicate that the mito-Dendra2 signal and vascular parameters are suitable for real-time and longitudinal examination of mitochondria in vivo in the cerebral vasculature of mice.NEW & NOTEWORTHY We introduce an innovative in vivo approach to study mitochondria in the cerebral circulation in their physiological environment by demonstrating the feasibility of long-term imaging and three-dimensional reconstruction. We postulate that the appropriate combination of Cre/Lox system and two-photon microscopy will contribute to a better understanding of the role of mitochondria in not only endothelium but also the different cell types of the cerebral circulation.


Assuntos
Circulação Cerebrovascular/fisiologia , Endotélio Vascular/metabolismo , Mitocôndrias/metabolismo , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica
17.
Am J Physiol Heart Circ Physiol ; 318(2): H295-H300, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922888

RESUMO

Nitric oxide (NO) is known to exert inhibitory control on mitochondrial respiration in the heart and brain. Evidence supports the presence of NO synthase (NOS) in the mitochondria (mtNOS) of cells; however, the functional role of mtNOS in the regulation of mitochondrial respiration is unclear. Our objective was to examine the effect of NOS inhibitors on mitochondrial respiration and protein S-nitrosylation. Freshly isolated cardiac and brain nonsynaptosomal mitochondria were incubated with selective inhibitors of neuronal (nNOS; ARL-17477, 1 µmol/L) or endothelial [eNOS; N5-(1-iminoethyl)-l-ornithine, NIO, 1 µmol/L] NOS isoforms. Mitochondrial respiratory parameters were calculated from the oxygen consumption rates measured using Agilent Seahorse XFe24 analyzer. Expression of NOS isoforms in the mitochondria was confirmed by immunoprecipitation and Western blot analysis. In addition, we determined the protein S-nitrosylation by biotin-switch method followed by immunoblotting. nNOS inhibitor decreased the state IIIu respiration in cardiac mitochondria and both state III and state IIIu respiration in brain mitochondria. In contrast, eNOS inhibitor had no effect on the respiration in the mitochondria from both heart and brain. Interestingly, NOS inhibitors reduced the levels of protein S-nitrosylation only in brain mitochondria, but nNOS and eNOS immunoreactivity was observed in the cardiac and brain mitochondrial lysates. Thus, the effects of NOS inhibitors on S-nitrosylation of mitochondrial proteins and mitochondrial respiration confirm the existence of functionally active NOS isoforms in the mitochondria. Notably, our study presents first evidence of the positive regulation of mitochondrial respiration by mitochondrial nNOS contrary to the current dogma representing the inhibitory role attributed to NOS isoforms.NEW & NOTEWORTHY Existence and the role of nitric oxide synthases in the mitochondria are controversial. We report for the first time that mitochondrial nNOS positively regulates respiration in isolated heart and brain mitochondria, thus challenging the existing dogma that NO is inhibitory to mitochondrial respiration. We have also demonstrated reduced protein S-nitrosylation by NOS inhibition in isolated mitochondria, supporting the presence of functional mitochondrial NOS.


Assuntos
Inibidores Enzimáticos/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Consumo de Oxigênio/efeitos dos fármacos , Amidinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Ornitina/análogos & derivados , Ornitina/farmacologia
18.
Neurobiol Aging ; 81: 222-233, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323444

RESUMO

Impairments in synaptic connectivity have been linked to cognitive deficits in age-related neurodegenerative disorders and healthy aging. However, the anatomical and structural bases of these impairments have not been identified yet. A hallmark of neural plasticity in young adults is short-term synaptic rearrangement, yet aged animals already display higher synaptic turnover rates at the baseline. Using two-photon excitation (2PE) microscopy, we explored if this elevated turnover alters the aged brain's response to plasticity. Following a sensory-evoked plasticity protocol involving whisker stimulation, aged mice display reduced spine dynamics (gain, loss, and turnover), decreased spine clustering, and lower spine stability when compared to young adult mice. These results suggest a deficiency of the cortical neurons of aged mice to structurally incorporate new sensory experiences, in the form of clustered, long-lasting synapses, into already existing cortical circuits. This research provides the first evidence linking experience-dependent plasticity with in vivo spine dynamics in the aged brain and supports a model of both reduced synaptic plasticity and reduced synaptic tenacity in the aged somatosensory system.


Assuntos
Envelhecimento/fisiologia , Espinhas Dendríticas/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Doenças Neurodegenerativas/etiologia , Neuroimagem , Sinapses/fisiologia , Vibrissas/fisiologia
19.
Neuromolecular Med ; 21(4): 493-504, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31172441

RESUMO

Measuring mitochondrial respiration in brain tissue is very critical in understanding the physiology and pathology of the central nervous system. Particularly, measurement of respiration in isolated mitochondria provides the advantage over the whole cells or tissues as the changes in respiratory function are intrinsic to mitochondrial structures rather than the cellular signaling that regulates mitochondria. Moreover, a high-throughput technique for measuring mitochondrial respiration minimizes the experimental time and the sample-to-sample variation. Here, we provide a detailed protocol for measuring respiration in isolated brain non-synaptosomal mitochondria using Agilent Seahorse XFe24 Analyzer. We optimized the protocol for the amount of mitochondria and concentrations of ADP, oligomycin, and trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP) for measuring respiratory parameters for complex I-mediated respiration. In addition, we measured complex II-mediated respiratory parameters. We observed that 10 µg of mitochondrial protein per well, ADP concentrations ranging between 2.5 and 10 mmol/L along with 5 µmol/L of oligomycin, and 5 µmol/L of FCCP are ideal for measuring the complex I-mediated respiration in isolated mouse brain mitochondria. Furthermore, we determined that 2.5 µg of mitochondrial protein per well is ideal for measuring complex II-mediated respiration. Notably, we provide a discussion of logical analysis of data and how the assay could be utilized to design mechanistic studies for experimental stroke. In conclusion, we provide detailed experimental design for measurement of various respiratory parameters in isolated brain mitochondria utilizing a novel high-throughput technique along with interpretation and analysis of data.


Assuntos
Encéfalo/metabolismo , Fluorometria/métodos , Ensaios de Triagem em Larga Escala/métodos , Microquímica/métodos , Mitocôndrias/metabolismo , Oximetria/métodos , Consumo de Oxigênio , Difosfato de Adenosina/farmacologia , Animais , Encéfalo/ultraestrutura , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Fluorometria/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microquímica/instrumentação , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/análise , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Oligomicinas/farmacologia , Fosforilação Oxidativa , Oximetria/instrumentação , Oxigênio/análise , Consumo de Oxigênio/efeitos dos fármacos , Prótons
20.
J Cell Physiol ; 234(12): 22242-22259, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31074012

RESUMO

Sustained inflammation and matrix metalloproteinase (MMP) activation contribute to vascular occlusive/proliferative disorders. Interleukin-17 (IL-17) is a proinflammatory cytokine that signals mainly via TRAF3 Interacting Protein 2 (TRAF3IP2), an upstream regulator of various critical transcription factors, including AP-1 and NF-κB. Reversion inducing cysteine rich protein with kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Here we investigated whether IL-17A/TRAF3IP2 signaling promotes MMP-13-dependent human aortic smooth muscle cell (SMC) proliferation and migration, and determined whether RECK overexpression blunts these responses. Indeed, IL-17A treatment induced (a) JNK, p38 MAPK, AP-1, NF-κB, and CREB activation, (b) miR-21 induction, (c) miR-27b and miR-320 inhibition, (d) MMP-13 expression and activation, (e) RECK suppression, and (f) SMC migration and proliferation, all in a TRAF3IP2-dependent manner. In fact, gain of TRAG3IP2 function, by itself, induced MMP-13 expression and activation, and RECK suppression. Furthermore, treatment with recombinant MMP-13 stimulated SMC migration in part via ERK activation. Importantly, RECK gain-of-function attenuated MMP-13 activity without affecting its mRNA or protein levels, and inhibited IL-17A- and MMP-13-induced SMC migration. These results indicate that increased MMP-13 and decreased RECK contribute to IL-17A-induced TRAF3IP2-dependent SMC migration and proliferation, and suggest that TRAF3IP2 inhibitors or RECK inducers have the potential to block the progression of neointimal thickening in hyperplastic vascular diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aorta/citologia , Movimento Celular , Proteínas Ligadas por GPI/metabolismo , Interleucina-17/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Proteínas Recombinantes/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Transdução de Sinais , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA